
J. Fluid Mech. (1997), �ol. 337, pp. 67–101

Copyright # 1997 Cambridge University Press

67

Added stresses because of the presence of FENE-P
bead–spring chains in a random velocity field

By HESHMAT MASSAH†  THOMAS J. HANRATTY

Civil Engineering Department, University of Illinois, Urbana, IL 61801, USA

(Received 20 February 1996 and in revised form 26 November 1996)

FENE-P bead–spring chains unravel in the presence of large enough velocity gradients.
In a turbulent flow, this can result in intermittent added stresses and exchanges of
energy between the chains and the fluid, whose magnitudes depend on the degree of
unravelling and on the orientations of the bead–spring chains. These effects are studied
by calculating the average behaviour at different times of an ensemble of chains,
contained in a fluid particle that is moving around in a random velocity field obtained
from direct numerical simulation of turbulent flow of a Newtonian fluid in a channel.
The results are used to evaluate theoretical explanations of drag reduction observed in
very dilute solutions of polymers.

In regions of the flow in which the energy exchange with the fluid is positive, the
possibility arises that turbulence can be produced by mechanisms other than the
interaction of Reynolds stresses and the mean velocity gradient field. Of particular
interest, from the viewpoint of understanding polymer drag reduction, is the finding
that the exchange is negative in velocity fields representative of the wall vortices that
are large producers of turbulence. One can, therefore, postulate that polymers cause
drag reduction by selectively changing the structures of eddies that produce Reynolds
stresses. The intermittent appearance of large added shear stresses is consistent with the
experimental finding of a stress deficit, whereby the total local shear stress is greater
than the sum of the Reynolds stress and the time-averaged shear stress calculated from
the time-averaged velocity gradient and the viscosity of the solvent.

1. Introduction

The addition of a high-molecular-weight polymer to a turbulent flow reduces the
drag on a solid wall. A striking feature of this phenomenon is that it can occur at very
low concentrations. For example, Walker, Tiederman & Luchik (1986) reported
reductions of 20–30% for the flow of fully mixed water solutions of 1 to 3 p.p.m. of
polyacrylamide through a 2.5¬25 cm channel. Experiments in our laboratory with a
fully mixed solution of 5 p.p.m. flowing in a 5.0¬50 cm channel at a Reynolds number
of 19000 (based on the half-height of the channel, the bulk velocity and the viscosity
of water) show a reduction of about 50% from what would be observed for water.
These results are consistent with earlier research by Patterson & Abernathy (1970) in
a pipe and by Merrill et al. (1966) in a Couette viscometer. This paper is motivated by
the need to understand the mechanism for drag reduction in studies such as those cited
above.

Under equilibrium conditions the long-chain polymer molecules used for drag
reduction are coiled. At the extremely low concentrations being considered they would
be expected to show a small effect on the rheological properties of the solution if they
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remained, approximately, in their equilibrium condition. However, the configuration
of a polymer molecule can be affected by the flow and, if the reciprocal of the rate of
strain is of the same order as the time constant of the polymers, the chain can unravel
(Liu 1989; Wedgewood & Bird 1988). Under these conditions large additional stresses
are introduced, even at very low concentrations of polymers. This is particularly
evident in linear or planar extensional flows where large increases in viscosity are noted
(Metzner & Metzner 1970; Lumley 1969, 1973; Lumley & Kubo 1984). Consequently,
the suggestion by Lumley (1969) that uncoiling of polymer molecules, in the buffer
region of a turbulent flow, causes drag reduction in very dilute solutions has had an
important impact.

Lumley’s theory has not been directly tested because of the difficulty of making
laboratory measurements of the configuration of polymer molecules in a turbulent
flow. This prompted a study of the behaviour of a solution of FENE-P bead–spring
chains in a velocity field obtained from a direct numerical simulation (DNS) of
turbulent flow of a Newtonian fluid in a channel (Massah et al. 1993). Fluid particles
were tracked in the DNS and the changes of all of the components of the rate-of-strain
tensor were noted. The response of an ensemble of chains to this changing velocity field
was calculated. The concentration is considered small enough that interactions of the
chains can be ignored; it is large enough that an average of the possible configurations
due to Brownian motion may be considered.

The chains were found to unravel in the viscous sublayer to about 80% of their fully
extended length, and to orient at an angle of about 4° to the direction of mean flow,
when the time-averaged rate of shear at the wall was ten times the reciprocal time
constant in the bead–spring model. In the buffer region the chains intermittently
contracted, expanded and changed their orientation with respect to the mean flow.
They remained contracted when they moved into the outer flow and uncoiled when
they moved back into the buffer region. If a FENE-P bead–spring chain can represent
the behaviour of a polymer molecule these calculations support the suggestion by
Lumley that polymers can become unravelled by the turbulence in the buffer region.
However, they differ in that Lumley did not anticipate an unravelling in the viscous
sublayer. The calculated unravelling of a bead–spring chain in the viscous sublayer
could explain the increased viscosity observed by Vissmann & Bewersdorff (1989) and
by James, McLean & Saringer (1987) in elongational flow when a solution is pre-
sheared in a laminar Couette or channel flow.

The influence of polymers on a turbulent flow will be felt through the introduction
of additional stresses, associated with polymer stretching. These stresses have been
studied by doing computational or laboratory experiments with simple rheological
flows. However, uncertainties exist in applying the results to turbulence, which is three-
dimensional, non-homogeneous and time-dependent. This prompted the present
investigation of stresses introduced by FENE-P bead–spring chains in a velocity field
obtained by a DNS of turbulent flow of a Newtonian fluid in a channel. This
experiment cannot be realized in a laboratory, since the presence of polymer molecules
would change the flow field. Therefore, the study may be considered to be a ‘thought ’
experiment in which a given random velocity field is maintained and the stresses
introduced by a dilute solution of bead–springs are determined; it is a rheological
measurement in that stresses are determined for a prescribed velocity field. Calculations
were done following the path of a fluid particle, so history was taken into consideration.
Because of this and because of the elasticity of the springs, the solution is viscoelastic.

A computation in which polymer stresses are introduced back into the momentum
equation is a far more difficult one, which may not be feasible with currently available
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computers. In order to resolve the stress gradients, a few million fluid particles would
have to be tracked. For a particle containing an ensemble of chains with five beads,
fifteen minutes of CPU time on a Cray-2 would be used for each time step in the
calculation. This would suggest that almost a century of CPU time would be needed
on a Cray-2. Some possible simplifications of this calculation have been suggested by
Wedgewood, Ostrov & Bird (1991), and some simplifications were explored by Massah
(1993). A coarse grid was used and elastic dumbbells were fixed in space at the node
points ; that is, they did not follow fluid particles. Drag reduction was obtained but the
calculated fluid turbulence was unrealistic.

Despite the limitations of the approach used in this paper, the calculations present
some physical background that is needed to interpret findings about turbulent flows of
very dilute polymer solutions for which polymer}polymer interactions can be ignored,
if one accepts that a FENE-P bead–spring chain is a good representation of a polymer
molecule. (The validity of the use of even the simple FENE-P dumbbell model is
discussed by Wedgewood & Bird 1988.)

A number of reviews of laboratory studies of turbulent flows of polymer solutions
have been presented. Therefore, it is only necessary to emphasize results which are
particularly pertinent to this study. Very large velocity gradients exist in the viscous
wall region (the viscous sublayer plus the buffer layer) close to a solid boundary. For
large enough Reynolds numbers this region is thin so that its contribution to the
velocity field can be described as an ‘effective slip ’. The influence of drag-reducing
polymers can be characterized as an increase in this effective slip caused by a thickening
of the viscous wall layer (Virk 1975).

A well-documented structural feature of turbulence close to a flat wall is the
existence of flow-oriented vortices with an average size of about 50 wall units (equal
to the ratio of the kinematic viscosity, ν, to the friction velocity u*). These vortices scale
with the thickness of the viscous wall region and are associated with events making
large contributions to the Reynolds stresses. The spanwise scale of the velocity
fluctuations close to a wall increases with the addition of drag-reducing polymers, even
if scaled with wall parameters defined for the drag-reduced flow (Fortuna & Hanratty
1972; Eckelman, Fortuna & Hanratty 1972; Massah 1993; Donahue, Tiederman &
Reischmann 1972; Oldaker & Tiederman 1977). This can be interpreted as resulting
from an increase in the size of the wall vortices or as a decrease in their importance.

Nikolaides (1984) and Lyons, Nikolaides & Hanratty (1988) used a two-and-a-half-
dimensional model (three components of the velocity in two dimensions) to represent
the flow-oriented wall vortices. Scaling arguments suggested that the characteristic
period of these vortices when made dimensionless with respect to wall parameters
should be approximately equal to the dimensionless characteristic wavelength, T+E
λ+E 100. Luchik & Tiederman (1988) showed, for well-mixed polymer solutions, that
an increase in λ+ is accompanied by the same increase in T+. This suggests that these
parameters are describing closely connected events.

Theoretical work aimed at understanding the influence of drag-reducing polymers
has focused on how they could decrease the Reynolds stress by changing the
characteristics of the turbulence. However, experiments with a central injection of a
concentrated polymer thread (Bewersdorff 1984) show that the local shear stress
calculated by a momentum balance, τ, is greater than the sum of the Reynolds shear
stress and a viscous shear stress calculated with the solvent viscosity and the time-mean
velocity gradient :

τ"®ρu«�«­µ
s

dua
dy

. (1)
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Willmarth, Wei & Lee (1987) observed this effect in experiments in which the polymer
was introduced into a settling chamber of their flow loop. This stress deficit has been
carefully documented by Usui (1990) for poorly mixed polymers. Harder & Tiederman
(see Tiederman 1990) also observed this stress deficit in their experiments with a well-
mixed polyacrylamide solution at the highest strain rate at the wall (4000 s−") and the
highest concentration (5 p.p.m.) that they studied. Koskie & Tiederman (1991)
observed a stress deficit in the buffer region of a turbulent boundary-layer flow, with
a well-mixed solution of polyacrylamide.

These studies show that polymers can introduce additional stresses other than would
be expected from simple rheological experiments. A generally accepted explanation of
this behaviour is not at present available. Berman (1989) used a FENE-P dumbbell
model for the molecules to calculate an additional stress which depends on the time
scale of the turbulent velocity fluctuations in the buffer region and on the elongational
viscosity of the polymer solution, but not on the mean velocity gradient.

Laser Doppler velocimetry (LDV) (Willmarth et al. 1987; Tiederman 1990), particle-
image velocimetry (PIV) (Massah 1993), and flush-mounted wall probes have been
used to measure fluid turbulence in the presence of drag-reducing polymers. The first
impression from PIV and LDV studies is that the turbulence is not strikingly different
from what is found in a Newtonian flow. However, a closer examination of
measurements reveals decreases in the magnitude of the normal and spanwise velocity
fluctuations in the near-wall region, even when compared at the same friction velocity.
For example, Fortuna & Hanratty (1972) used flush-mounted electrochemical probes
to show that the ratio of the root-mean-square of the spanwise component of the
velocity gradient at the wall to the time-mean velocity gradient is about one-half the
value for a Newtonian fluid at a drag reduction of 50%. The LDV measurements of
Tiederman (1990) reveal large decreases in the normal velocity fluctuations throughout
the viscous wall region. These results seem consistent with the observation of an
increase in the scale of the flow-oriented vortices that dominate the viscous wall region
(Nikolaides 1984; Lyons et al. 1988). The striking decrease in the Reynolds stress
correlation coefficient, observed by Luchik & Tiederman (1988), is not understood; it
could be connected with a decrease in the importance of the highly coherent flow-
oriented vortices.

Section 4 contains the principal contribution of this paper. The added stresses
associated with the movement of FENE-P chains in a velocity field obtained from a
direct numerical simulation of turbulent flow of a Newtonian fluid in a channel are
presented under conditions that the ratio of the time-mean rate of strain at the wall to
the reciprocal time constant in the model for the bead–spring chains is large enough
that unravelling is occurring. By relating the changes of the stress to the changes in the
rate-of-strain tensor, the rheology of solutions of FENE-P bead–spring chains in a
random velocity field is studied. Several of the results are pertinent to experimental
findings about drag-reducing polymers.

Large stresses and large exchanges of energy between the fluid and the bead–spring
chains occur intermittently. These cannot be explained by introducing, intermittently,
increases in viscosity. The bead–spring chains sense certain hydrodynamic events by
unravelling and assuming a special orientation to the fluctuating flow field. Large losses
of energy to the bead–spring chains appear to be associated with the flow-oriented
vortices in the wall region and, therefore, could result in an increase in the scale of these
vortices or a decrease in their importance. The occurrence of large intermittent shear
stresses is consistent with the observation of stress deficits. The existence of a net
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exchange of energy from the polymers to the turbulence in certain regions suggests the
possibility that turbulence could be produced through polymer stresses.

Results on added stresses in several well-defined flow fields appear in §3. These are
not central to the main thrust of the paper : they are presented to document the
calculational procedure and to provide a basis for interpreting rheological behaviour
in a random velocity field.

Before closing the introduction, a discussion of physical mechanisms other than the
proposal by Lumley is appropriate. Metzner & Park (1964) showed that viscoelasticity
is required for drag reduction to occur in solutions which are concentrated enough to
show a non-Newtonian viscosity under simple shear. Seyer & Metzner (1969) suggested
that viscoelasticity changes flow-oriented vortices because the polymer molecules
would limit stretching motions and Gadd (1965) suggested that viscoelasticity would
decrease the bursting frequency. Patterson & Abernathy (1970) argued that dissipation
with a coiled polymer and work required for elastic deformation would contribute to
high solution viscosity and oppose the intensification of vortices near the wall.

Several researchers have suggested that viscoelasticity can alter the turbulent velocity
fluctuations. The most recent contribution of this type is from de Gennes (1990), who
proposed that polymer effects will occur when the frequency of the velocity fluctuations
is larger than a reciprocal time scale characterizing the elasticity of the polymer. Two
scenarios, which depend on whether the polymer molecules are partially elongated or
fully extended, are outlined. He suggested that polymers, in high enough concen-
trations, could affect the energy cascade by presenting an elastic limit to the
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frequency spectrum or by enhancing viscous dissipation at high frequencies. The
possible impact of these effects on the velocity field is not clear.

Merrill et al. (1966) proposed that the alignment of polymers by a shear rate would
give rise to anisotropic effects. Fortuna & Hanratty (1972) used this idea to explain
their observed increase in the dimensionless spanwise scale, λ�*}ν, by arguing that
spanwise shear rates see a larger viscosity than do the principal shear rates. Den
Toonder (1996) has made a computer study of changes of the turbulence when viscous
anisotropic effects are introduced.

2. Theory

The stresses generated by a pair of beads and the connecting spring are considered
to be due to the tension or compression force transmitted through the spring and the
momentum transfer of the beads due to Brownian motion. These effects are
represented by the following equation given in Bird et al. (1987, pp. 88–89) :

τp¯ nH
©QQª

1®©Q#}Q#

!
ª
®

b

b­2
nkTδ. (2)

This considers an average of the possible configurations associated with Brownian
motion. It employs Kramers’ form of the polymer contribution to the stress tensor and
the Peterlin approximation for ©QQ}1®(Q#}Q#

!
)ª. Equation (2) is used in all of the

calculations presented in this paper. The first and second terms are, respectively, the
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contributions of the spring and the beads. A plus sign represents a tensile stress and a
minus sign represents a compressive stress. The number of chains in a unit of volume
is n ; H is the spring constant ; Q is the vector connecting two adjacent beads. This
model allows a spring to be stretched to a maximum length of Q

!
. Equations describing

the average dyadic product ©QQª are given by Wedgewood & Bird (1988) and
discussed in Massah et al. (1993). The non-dimensional term b¯HQ#

!
}kT is a measure

of the extensibility of the chain, where k is the Boltzmann constant and T is the
absolute temperature. The quantity δ is the unit tensor. For a chain with N beads, (2)
is written as

τp

ρu*#

¯
nkT

ρu*#
(b 03

N−"

m="

f
m

©Q
m

Q
m
ª

Q#

!

1®(N®1) b

b­2
δ* , (3)

where f
m

¯ 1}1®©Q#
m
}Q#

!
ª. The stress tensor is normalized with the wall shear stress,

τ
w

¯ ρu*#, in turbulent flows, where u* is the friction velocity. For results presented
in §§3.1 and 3.2, ρu*# is taken to be the largest principal strain rate multiplied by the
solvent viscosity. For results in §3.3, ρu*# is the dominant shear stress. The term
nkT}ρu*# may be interpreted as a dimensionless concentration. It is given a value of
0.003. This is specified by using ρ¯ 1 g cm−$, a molecular weight of 10' g mole−", a
concentration of 1 p.p.m., a temperature of 22 °C, and a turbulent flow with ρu*#¯
10 g cm−" sec−#. The shear rate at the wall would equal 10$ s−". (The experiments in our
laboratory cited in the Introduction were at a wall shear rate of 1±2¬10$ s−". After the
introduction of 5 p.p.m. of polymer the drag decreased to 50%, and the wall shear rate
to 0±6¬10$ s−".) Calculations were done for chains with five beads, for b¯ 100. A time
constant for the chain is defined as λ

p
¯3}4H, where 3 is the Stokes drag coefficient

for a single bead; it is a measure of the ratio of the force generated by Stokes drag on
a bead to the strength of the spring. It was given a value of λ+

p
¯ 10, where the ­

symbol is used to indicate that the quantity has been made dimensionless using u* and
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ν. In the turbulent flow calculations the locations of a particle and the components of
the velocity gradient tensor at that location were stored at 1020 time increments
separated by ∆t+¯ 0.25. The changes in the average configuration of the bead springs
over each ∆t+ were calculated, for a realization of the velocity gradient tensor, in 357
time steps. A detailed description of the numerics is given by Massah et al. (1993). The
evaluation of ©Q

m
Q

m
ª requires the solution of (3N #)}2 (for even N ) or 3(N #®1)}2

(for odd N ) coupled ordinary differential equations. As N increases smaller time steps
need to be used. Because calculated added stresses depend on the choice of nkT}ρu*#

and the number of springs, only the relative values of the different stresses are of
interest.

Preliminary tests were done with chains having two, five and ten beads. The
behaviour of a two-bead chain in simple flow is very close to that of a five-bead chain.
The differences are in the magnitudes of the stretching and of the added stresses.
However, in complex laminar flows and in turbulent flows, the behaviours of two-bead
and five-bead chains are different. At certain times in these flows a five-bead chain
creates added stresses that are not observed for a two-bead chain. Also, the ratios of
the magnitudes of the stress components are different for five-bead and two-bead
chains. However, the differences in the behaviours of five-bead and ten-bead chains are
not important and consequently the enormous time required to do calculations with a
ten-bead chain (compared to a five-bead chain) is not justified.

An equation of motion describing the velocity field can be obtained by representing
the stress as a sum of the solvent stress, τs

ij
, and the added stresses, defined by (3). A

mechanical energy balance for the total kinetic energy of the turbulent velocity
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fluctuations can be derived by taking a moment of this equation, as described in Hinze
(1987). A contribution of fluctuating solvent stresses is given by

εν ¯ 0¥ui

¥x
j

­
¥u

j

¥x
i

1 ¥u
i

¥x
j

¯ [¡u«­¡u«T] : [¡u«], (4)

where all terms are made dimensionless with velocity u* and length ν}u*. Summation
over the i and j indices is implied, u« is the fluctuating velocity vector and the
superscript T signifies the transpose. Equation (4) is always positive and represents the
dissipation of mechanical energy due to viscosity. A consideration of the total energy
balance for a Newtonian fluid (Hinze 1987) shows that this decrease in mechanical
energy appears as an increase of the internal energy of the fluid (the temperature).

The contribution of the dimensionless fluctuating added stresses to τp
ij
(¥u

i
}¥x

j
),

ε
p
¯ [τp] : [~u«], (5)

will be called the ‘added dissipation’. It differs from εν in that it may be positive or
negative, since the springs have the possibility of extracting energy from or releasing
energy to the fluid. This latter behaviour offers the possibility of observing a local
instantaneous negative ‘added dissipation’, documented in the computation when τp

and ~u« do not have the same sign. This suggests the interesting possibility that energy
can be withdrawn from the fluid in some parts of the flow and released in other parts.
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Consequently, it is not obvious how one should express an ‘average’ dissipation of
turbulent energy due to the presence of FENE-P bead–spring chains because of the
instantaneous possibility of energy storage within the chains. There is a precedent for
using the analogue of (4) to deal with this problem (Bird et al. 1987, p. 106; Riseman
& Kirkwood 1956), but the fluid temperature is not so simply related to ε

p
and εν as

for a Newtonian fluid (Appendix C of Curtiss & Bird 1991).

3. Results for defined flows

3.1. Uniaxial elongational flow

Figure 1 shows the stresses, normalized with the largest principal stress in a Newtonian
fluid, caused by the presence of chains as a result of the inception of a uniaxial
elongational flow in the z-direction at t+¯ 0, where time is normalized with the largest
principal strain rate in the flow. As shown in figure 1 of Massah et al. (1993), the chains
unravel to their maximum length and align along the z-axis. Therefore, only
elongational stresses are produced. The major stress τ

zz
is about 120 times the stress in

a Newtonian flow. The very small values of τ
yy

and τ
xx

result from the Brownian
motion of the beads. (This coil-stretch transition is discussed by Wiest et al. (1988) and
Liu (1989).)

As the number of beads decreases the magnitudes of the stresses decrease. This
decrease is not the same for all components of the stress tensor, but the shapes of the
curves remain the same. The levels of the stresses increase with λ+

p
; for very small λ+

p

no overshooting or undershooting was observed in the relations for τ
yy

and τ
xx

.
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3.2. Couette flow

Calculations for the added stresses due to the presence of bead–spring chains in a
Couette flow are shown in figure 2. Again, these are normalized with the values of the
maximum value of the principal stress in a Newtonian fluid. These were, therefore,
done for a dimensionless rate of shear of ¥u}¥y¯ 2, since the largest principal strain
rate was selected to be the same as was explored in the preceding section. As already
shown in Massah et al. (1993), a FENE-P bead–spring chain in this flow reaches about
80% of its full extension and orients at an angle of only 4° to the flow axis at t+E 60.

Both elongational (τ
xx

, τ
yy

, τ
zz
) and shear stresses (τ

xy
) are produced. Stresses τ

zz
and

τ
yy

are negative and negligible compared to τ
xx

, which is positive. Overshoots in both
τ
xx

and τ
xy

are observed. A steady state is reached in the Couette flow after t+E 60.
The normal stress, τ

xx
, is 3.8 times the largest principal stress because of the alignment

of the bead–spring at a small angle to the flow direction; it is about 3% of the value
shown in figure 1 because the chain does not extend fully, and because the velocity
difference seen over the length of the chain is smaller. The value of added stress τ

xy
is
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only 0.055 times the value for the solvent because of the small angle the chain makes
with the x-axis.

Overshoots of the type shown in figure 2 have been previously calculated by
Oettinger & Wedgewood (1988). Overshoots in the intrinsic viscosity have been
observed in studies of the start-up of shear flows by Peterlin (1966) and by Mochimaru
(1981).

3.3. Combined flow

Calculations in this subsection attempt to simulate what would happen to chains
which are extended in the viscous sublayer of a turbulent field where ¥u}¥yE 1
and then ejected into the buffer zone where they are exposed to a combination of
other rates of strain in addition to a large ¥u}¥y. Calculations of the components of the
fluctuating velocity gradient tensor along the trajectory of a fluid particle in a random
flow are shown in figure 9. The instantaneous ¥u}¥y is actually much larger in the
viscous sublayer and in the buffer region because the time-mean ¥u}¥y needs to be
added to the values given in the figure. These types of results motivated studies of the
combined effect of ¥u}¥y and another velocity gradient whose magnitude is 0.1¥u}¥y.
Details of the calculations may be found in Massah (1993). A few examples are
discussed here.

(a) Uniaxial extensions

Figure 3 shows the configurations of chains for a case in which ¥u}¥y¯ 1 for t+¯
0–200 and a uniaxial extension perpendicular to the plane of the shear (¥w}¥z¯ 0.1,
¥�}¥y¯®0.05, ¥u}¥x¯®0.05) is added for t+¯ 70–200. Figure 3(a) gives the
moments of inertia, I

i
, of the chain about the x-, y-, and z-axes, normalized with the

equilibrium value. Figure 3(b) gives the angles, α
i
, that the chains make with the x-, y-

and z-axes. The distance between the end beads in the chain, r, and the length of the
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second link, q
#
, are plotted in figure 3(c). Here the lengths, r and q

#
, are normalized

with the maximum possible values, (N®1)Q
!
and Q

!
. The small positive value of ¥w}¥z

that is introduced at t+¯ 70 causes the chain to recoil momentarily, to rotate off the
x-axis and to align with the z-axis. The flow is then dominated by the ¥w}¥z
component; the chains extend to a larger value than they had in the initial Couette
flow. A period of ∆t+E 30 is needed for the chain to reorient.

Figure 4 gives the added stresses generated by the chains. These are normalized with
the shear stress that would exist in a Newtonian fluid with the dominant rate of shear.
The addition of ¥w}¥z¯ 0.1 causes τ

zz
to increase to a value of 11 and τ

xy
to decrease

to a value of 0.01. Note that the added normal stress does not reach the value found
in the calculations shown in figure 1, since ¥w}¥z is only one-tenth as large.

The introduction of a uniaxial extension in the plane of the shear and in the direction
of the main flow (¥u}¥x¯ 0.1, ¥�}¥y¯®0.05, ¥w}¥z¯®0.05) for t+¯ 70–200
increases stretching in the x-direction and rotates the bead–spring closer to the x-axis.
This results in a decrease in τ

xy
and an increase in τ

xx
.
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The addition of a uniaxial extension in the plane of the shear and perpendicular to
the direction of mean flow (¥�}¥y¯ 0.1, ¥u}¥x¯®0.05, ¥w}¥z¯®0.05) for t+¯
70–200 has effects similar to what is observed with the addition of ¥�}¥x¯ 0.1, to be
discussed below. The chain is rotated toward the y-axis and stretched more than is
observed for a Couette flow, with ¥u}¥y¯ 1. Added stresses τ

xx
and τ

xy
respectively

increase to 11 and 1.6. Of particular interest is the observation of a large added shear
stress that could not be realized in a pure Couette flow and a large τ

xx
in the presence

of a negative ¥u}¥x.

(b) Two-dimensional extensions

The influence of the imposition of a two-dimensional extension in the (y, z)-plane,
on a shear flow, was studied by the introduction of (¥u}¥x¯®0.1, ¥�}¥y¯ 0.05,
¥w}¥z¯ 0.05) at t+¯ 70. The chains collapse and reorient in the (y, z)-plane. The
change in configuration is accompanied by increases in τ

yz
, τ

yy
and τ

zz
.

The main effect of the introduction of a two-dimensional extension in the (x, z)-plane
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(¥�}¥y¯®0.1, ¥u}¥x¯ 0.05, ¥w}¥z¯ 0.05) at t+¯ 70 is to cause the bead–spring
chains to align close to the x-axis and to rotate slightly out of the (x, y)-plane. This
results in a higher value of τ

xx
(¯ 5) and very low value of τ

xy
(E 0.01).

The introduction of a two-dimensional extension in the (x, y)-plane (¥w}¥z¯®0.1,
¥�}¥y¯ 0.05, ¥u}¥x¯ 0.05) at t+¯ 70 causes increases in τ

xx
, τ

xy
and τ

yy
.

(c) Shear rates in other planes

The principal effects of adding other velocity gradients (than extensional flows) to a
shear flow are to rotate the bead–spring and to cause it to extend or contract. Results
of calculations showing particularly large effects on the added stresses are shown in
figures 5 and 6.

The addition of ¥�}¥x¯ 0.1 (for t+¯ 70–200) to ¥u}¥y¯ 1 increases stretching and
changes the orientation to the x-axis from 4° to about 19°. As shown in figure 5, τ

xx

increases to 33, τ
xy

to 11 and τ
yy

to about 3. The added shear stress is 200 times the
added stress that would be observed in a simple Couette flow with the same ¥u}¥y.
An added stress τ

xx
is observed which is about 1}3 of what would exist in a uniaxial

flow with ¥u}¥x¯ 1, even though ¥u}¥x¯ 0. A relatively large τ
yy

is realized, with
¥�}¥y¯ 0.

The addition of ¥w}¥x¯³0.1 (for t+¯ 70–200) to a flow with ¥u}¥y¯ 1 causes
slightly more stretching and a large rotation in the (x, z)-plane, so that the axes of the
chains make an angle of 65° to the x-axis. As shown in figure 6, a positive ¥w}¥x results
in large τ

zz
(E 3) and τ

xz
(E 1.5) and a reduction of τ

xx
from 2 to about 0.9. A negative

¥w}¥x causes a negative value of τ
xz

.
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The addition of velocity gradients ¥u}¥y or ¥u}¥z at t+¯ 70 has a small effect. The
chain rotates toward the x-axis. The increase in τ

xx
and decrease in τ

xy
are smaller than

what is found for the addition of a uniaxial stretching, ¥u}¥x. The imposition of ¥�}¥x
¯®0.1 at t+¯ 70 introduces an additional rotational motion in the (x, y)-plane. It has
the opposite effect of ¥�}¥x¯ 0.1: the chain collapses. The addition of ¥�}¥z¯³0.1
at t+¯ 70 has no effect on the orientation of the chain and only a small effect on the
stretching. Stresses τ

xx
and τ

xy
are doubled and τ

yz
reaches a value of 0.1. A small

increase in τ
xz

(E 0.05) is observed.

3.4. Summary of results for defined flows

As is expected from laboratory experiments, a uniaxial stretching, which is large
enough to extend chains fully, is associated with the appearance of a very large
elongational stress. Extended bead–spring chains in a Couette flow are accompanied
by a small added shear stress and by a large elongational stress, even though ¥u}¥x¯ 0.
These stresses appear because the chains are rotated around the z-axis. On average,
they make a small angle to the x-axis and, therefore, see a velocity difference associated
with the shear ¥u}¥y. The shear stress added to a Couette flow by the presence of chains
is about 3% of the added elongational stress and about 0.08% of the elongational
stress added to a uniaxial elongational flow. Therefore, elongational viscosity is
enhanced in both a Couette flow and an elongational flow. The small amount of shear
viscosity added in a Couette flow may not be detectable in the laboratory.
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Calculations with a flow field consisting of the combination of a large shear,
¥u}¥y¯ 1, and additional velocity gradients that are an order of magnitude smaller
provide results which might not be anticipated from experiments with simple Couette
or extensional flows. Thus the addition of ¥�}¥x¯ 0.1 or of a uniaxial extension with
¥�}¥y¯ 0.1, give added shear stresses, τ

xy
, which are, respectively, 11 and 1.6 times the

stress in the solvent. The addition of ¥�}¥x¯ 0.1 causes the added elongational stress,
τ
xx

, to increase from 2 to 30 and elongational stress τ
yy

to reach a value of 3, even
though ¥u}¥x¯ 0 and ¥�}¥y¯ 0. The addition of a uniaxial extension in the (y, z)-
plane (¥u}¥x¯®0.1, ¥�}¥y¯­0.05, ¥w}¥z¯­0.05) introduces large values of the
shear stresses, τ

yz
, τ

zy
, even though the shear rate in this plane is zero.

4. Results for a random flow field

4.1. Example 1

Figure 7 is an example of the trajectory of a fluid particle in a random field. The particle
was released at the centre of the channel at y+¯ 5 and spent most of its time at the
outer edge of the viscous sublayer and in the buffer region. The variation of the y- and
z-positions with time are given in figure 7(b, c). Figure 7(a) gives an end view of the
particle trajectory. The variation of the configuration of the chains with time is
presented in figure 8, the components of the fluctuating velocity gradient, in figure 9,
and the added stresses normalized with the average stress at the wall, in figure 10.

Figure 11(c) gives the energy dissipation due to viscosity in the fluid particle
containing the chains, εν, and the ‘dissipation’ associated with the stresses added by the
presence of the chains, ε

p
. Figure 11(a, b) gives the contributions of the different

components of the added stress to ε
p
. Thus, ε

ij
¯ τp

ij
(¥u

i
}¥x

j
), with no summation over

the i and j indices. The complexity of these flows makes it difficult to interpret
completely figures 10 and 11 from the time variation of the components of the velocity
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gradient tensor, shown in figure 9. Nevertheless, some important features can be
examined. In particular, the sharp peaks in ε

p
at t+¯ 178 (position I) and at t+¯ 220

(position II) will be considered.
The configuration from t+¯ 0–50, shown in figure 8, is typical of the viscous

sublayer. The behaviour is the same as for a Couette flow: the chains are at about 80%
of their fully extended length and assume an angle of about 4° with the x-axis. The
added stresses, τ

xx
and τ

xy
(shown in figure 10), are one-half those given in figure 2

because the normalizing stress in the Couette flow calculations was one-half the value
used in these calculations. At t+¯ 50–100 the fluid particle moves rapidly out of the
viscous sublayer and through the buffer layer. The polymer chains contained in the fluid
particles keep approximately the same configurations they had in the sublayer ; the
large positive τ

xx
is maintained. For t+¯ 0–100, the added energy dissipation

associated with polymer stress τ
xx

(ε
xx

in figure 11) can be positive or negative,
depending on the sign of ¥u}¥x.

During the period t+¯ 100–130 the particle is outside the buffer layer where it
experiences lower values of ¥u}¥y and a large negative value of ¥u}¥x. The chains
contract (figure 8) and create very small values of added stress (figure 10). At t+¯ 150
the particle moves back into the buffer region where the chains extend (figure 8,
t+¯ 180), contract (figure 8, t+¯ 205) and change their orientation.
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At position I there is a sudden change in direction (figure 7a) and a peak in ¥�}¥y
(figure 9a). Figure 9(b) gives the fluctuations in ¥u}¥y. The actual instantaneous value
of this shear rate is the sum of the time-average and the fluctuations, so that it is
relatively large. This, in combination with a large positive ¥�}¥y (and negative ¥w}¥z)
orients the extended chains in the (x, y)-plane at an angle of about 30° to the x-axis and
of about 60° to the y-axis. As a consequence, large positive contributions by the chains
to τ

xy
and τ

xx
arise (figure 10). The peak in ε

p
, shown in figure 11, is mainly associated

with τ
xy

¥u}¥y (see ε
xy

in figure 11a) since ¥u}¥x is small. The contraction of chains
between t+¯ 180 and 200 appears to be associated with a decrease in ¥u}¥y
and elongational strain rates (¥u}¥y, ¥�}¥y, ¥w}¥z) that are close to zero (figure 9b,
t+¯ 205).

At II in figure 7 there is a sudden decrease in the velocity toward the wall and a
change in the direction of motion. This is associated with an increase in ¥u}¥y, positive
values of ¥u}¥x and ¥w}¥z, and negative values of ¥�}¥y, ¥w}¥x, ¥u}¥z. The chains
extend and reorient in the (x, z)-plane at an angle of about 60° to the z-axis. The



Added stresses from bead–spring chains in a random �elocity field 87

0 50

t+

100 150 200 250

80

60

40

20

(b)

(c)

0.6

0.4

0.2

300

I II

0.8

I

IIIII
αx

αy

αz

q2

r

120

80

40

(a)

Ix

Iy

Iz

III

F 18. Variation of the configuration for particle 3: (a) moments of inertia ; (b) angles to the
x-, y- and z-axes ; (c) end-to-end distance and r.m.s. extension of link 2.

experiments with combined fields suggest that the strong ¥u}¥y and the two-
dimensional extension associated with a negative ¥�}¥y rotates the chains toward the
x-axis and increases τ

xx
. The shear rate ¥w}¥x rotates the chains in the negative z-

direction where velocity differences exist over their lengths, due to the negative ¥u}¥z.
A large negative value of τ

xz
and a large positive value of τ

xx
result. The positive peak

in ε
p

is mainly the result of the interaction of a negative ¥u}¥z and a negative τ
xz

(ε
xz

in figure 11a).

4.2. Example 2

Figures 12–16 present results for a particle which starts its trajectory at y+¯ 5 and
spends most of its time in the buffer region.

At I the chains extend in the x-direction and make a small angle with the x-axis
(figure 13) because of a large value of shear rate ¥u}¥y which is the sum of the time-
averaged value and the fluctuation given in figure 14(b). A large τ

xx
(figure 15) results.

This is associated with a negative ε
p

at t+¯ 5 because ¥u}¥x is negative (figure 14a).
Over the period t+¯ 100–150 the particle is at y¯ 35, where the sum of the time-

average and the fluctuations (figure 14b) in ¥u}¥y are small. The chains are observed
to contract (figure 13). At t+¯ 150–170 the particle moves rapidly toward the wall
where it experiences much larger time-averaged ¥u}¥y. At position II the movement
toward the wall is decelerated and there is an acceleration in the z-direction. The chains
are exposed to a negative ¥�}¥y and large positive ¥u}¥z and ¥w}¥z, in addition to large
¥u}¥y. Since ¥�}¥yE®¥w}¥z, this resembles a stagnation line (rather than a uniaxial
extension) superimposed on a shear flow. The positive ¥u}¥y and ¥u}¥z unravel the
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chains and orient them along the x-axis ; the positive ¥w}¥z stretches them further and
rotates them into the (x, z)-plane, so that at t+¯ 170–180 they are at angles of 60° to
the z-axis and 30° to the x-axis (figure 13). As a result, the chains contribute large τ

xx
,

τ
zz

and τ
xz

(figure 15). The peak in ε
p

at t¯ 175 results from ε
xz

¯ τ
xz

¥u}¥z and ε
zz

¯
τ
zz

¥w}¥z (figure 16). Because ¥u}¥x is close to zero ε
xx

¯ τ
xx

¥u}¥x makes a small
contribution.

4.3. Example 3

Figures 17–21 give another example for which a particle starts at y+¯ 5 and spends
most of its time in the buffer layer. Large positive ε

p
are exhibited at I (t+¯ 110), II

(t+¯ 135–160) and at III (t+¯ 215).
Over the period t+¯ 0–60, for which the particle resides in the region y+! 7, an

unravelling and alignment of the chains with the x-axis occurs because of large values
of ¥u}¥y. They reach a maximum extension of about 0±9 at t+¯ 53 (figure 18) when a
large positive spike in τ

xx
and a small negative spike in τ

xz
are observed. The positive

τ
xx

makes a negative contribution to ε
p

(figure 21a) and τ
xz

makes a positive
contribution (figure 21a).

Between t+¯ 60 and 100 the particle moves rapidly out of the viscous sublayer to
the edge of the buffer region. The chains experience a large ¥u}¥y, a large negative
¥u}¥x and positive ¥�}¥y, ¥w}¥z of the same magnitude (figure 19). This results in
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contracted chains which are not aligned with any of the axes (figure 18). As a result,
the added stresses and ε

p
are small.

Starting at t+¯ 100, the chains expand and orient in the (x, y)-plane at roughly 45°
to the x- and y-axes (figure 18). Spikes in τ

xx
, τ

yy
and τ

xy
are noted at t+¯ 110 where

large positive values of ¥�}¥y and ¥�}¥x, combined with ¥u}¥y, produce a large
difference in the streamwise and normal velocity components over the chain length.
This results in positive values of τ

xy
¥u}¥y, τ

yx
¥�}¥x, τ

yy
¥�}¥y, a negative value of τ

xx

¥u}¥x (because ¥u}¥x is negative) and a net positive peak in ε
p

For t+¯ 140–170, ¥�}¥y decreases and the chains orient with the x-axis (figure 18).
Large values of τ

xx
and τ

xy
are noted in the transition (t+¯ 140–155), while ¥u}¥yE

0±08 and the chains are not, yet, aligned with the x-axis. The peak in τ
xy

at t+¯
135–145 (figure 20) is associated with a peak in ¥�}¥x (figure 19c) ; the peak in τ

xx
at

t+¯ 145–155 (figure 20) appears to be related to a peak in ¥u}¥x and positive values of
¥�}¥x, and ¥u}¥y (figure 19a). These stresses contribute to positive τ

yx
¥�}¥x, τ

xx
¥u}¥x

and a peak in ε
p
, shown in figure 21(c) for t+¯ 135–160.

Between t+¯ 170 and 200 a contraction and a rotation into the (x, z)-plane is
observed. At t+¯ 200–220 the chains expand and orient along the z-axis. The peaks in
τ
zz
, τ

xz
, and the peaks in ε

p
at t+¯ 215 are caused by two-dimensional extension in the

(x, z)-plane associated with positive ¥w}¥z, ¥u}¥x and negative ¥�}¥y (see figure 19a).

4.4. Relation of large positi�e ε
p

to the �elocity field

Large values of τ
xz

were observed for example 1, position II (1-II), example 2, position
II (2-II), and example 3, position III (3-III). All of these events are characterized by
large positive ε

p
, large negative values of ¥�}¥y and a reorientation from the (x, y)-

plane to the (y, z)-plane. ¥w}¥z and ¥u}¥x are positive and approximately equal. The
flow involves a combination of a strong velocity gradient at the wall and a three-
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dimensional extensional flow in the (x, z)-plane. Case (2-II) involves the combination
of a strong velocity gradient, ¥u}¥y, with a two-dimensional stagnation flow, negative
¥�}¥y and a positive ¥w}¥z of the same magnitude. Case (3-III) is a stagnation flow
which is intermediate between cases 1 and 2.

An examination of the fluctuating velocity field indicates that these events are
associated with the downwash of x-vortices. This is illustrated in figure 22(a), which
shows the vectors in the (y, z)-plane at t+¯ 165. Position II of the particle being
tracked in example 2 is indicated by the large dot at y+¯ 10±9, z+¯ 257. The x-vortex
in which the particle is entrained has a spanwise dimension of 40–50 wall units and is
typical of the structures identified in previous papers as being large producers of
Reynolds stress.

Large values of τ
xy

were observed for (1-I), (3-I) and (3-II). All are characterized by
large positive ¥�}¥y at values of y+ between 20 and 50 and associated with large τ

xx
.

As shown in figure 8, the chains are rotated away from the x-axis by the positive ¥�}¥y
in case (1-I). For cases (3-I) and (3-II) rotation and stretching is aided by positive ¥�}¥x
so the value of τ

xy
is 6 times larger than for (1-I). Figures 22(b) and 22(c) show the

vector field and the particle locations for points (1-I) and (3-I). Again, it is noted that
large positive added dissipations are associated with x-vortices attached to the wall.
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F 22. Velocity vector field associated with (a) particle position II in example 2, (b) particle
position I in example 3, (c) particle position I in example 1. The enclosed dot is the position of the
particle.

4.5. Summary of the results

Eight different fluid particles were tracked over a time interval of 250 units. The
particles were released at different places in the channel. These studies provided added
stresses for 8000 different realizations of the velocity gradient tensor in the presence of
a concentration of bead–chains roughly equivalent to about 1 p.p.m. of polymer. The
bottom wall is at y+¯ 0 and the centre of the channel is at y+¯ 150.

Figures 23 and 24 summarize calculations of τ
ij
, ε

p
and εν obtained for y+! 60.

Beyond y+¯ 50 very small added stresses were generated. Data for the contributions
of the different stress components to ε

p
are given in figure 25.

Normal stresses were always positive, whereas shear stresses were positive or
negative. For y+! 20 added stress τ

xx
is dominant. Large values of τ

zz
and τ

xz
,

observed around y+E 10, are caused by a reorientation of the chain into the (x, z)-
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F 23 (a–c). For caption see facing page.

plane caused by impaction of fluid on the wall. Large values of τ
xy

and τ
yy

observed
for 20! y+! 50 are associated with flow-oriented vortices.

Large negative spikes in ε
xx

are observed at y+¯ 10–20. However, large positive and
negative ε

xx
are obtained for y+" 30. The largest value of positive dissipation was due

to an added τ
xy

at y+¯ 30–40 (point 3-I). For y+¯ 30–40 the added ‘dissipation’ is
mainly positive. Near the wall, y+! 10, large positive and negative dissipations are
observed. The net average values of ε

p
over the whole region is positive.

The net average added shear stress, τ
xy

, is positive. The peaks at y+¯ 30–50 are
particularly large, being 3 to 5 times the wall shear stress.
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F 23. (a–f ). Plots of added stresses calculated over the trajectories of eight particles.

5. Discussion of results on a random flow

5.1. Rheology of a FENE-P bead–spring chain in a random flow

In the viscous sublayer, FENE-P bead–spring chains behave similarly to what is found
in a Couette flow. The chains are unravelled by the large velocity gradient, ¥u}¥y.
Because they are oriented very close to the x-axis the added shear stress, τ

xy
, is small,

of the order of 0±1. The added elongational stress, τ
xx

, is large, but not so large as in
a pure elongational flow.

When the particle moves out of the viscous sublayer the chains expand and contract,
and change their orientation. Large added shear stresses, τ

xy
and τ

xz
, which would not

be anticipated from simple rheological experiments, can develop. The interpretation of
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these results in the outer part of the buffer region is complicated because a number of
velocity gradient components have the same magnitude. Close to the wall, in the inner
part of the buffer region, large values of τ

xz
occur when the fluid impinges on the wall

and the chain orients in the (x, z)-plane.
One of the more interesting results coming from this study is the observation of large

intermittent non-isotropic ‘added dissipations’ which can be positive or negative,
depending on whether energy is being transferred to the chain by the fluid or from the
chain to the fluid. The complicated non-Newtonian rheology in a random flow is
highlighted when it is observed that these events are not coincident with large
dissipation of energy by the solvent ; that is, they cannot be explained by simply
changing the viscosity.

Only a few of the stresses contribute significantly to an energy exchange between the
chains and the flow field. Elongational stress τ

xx
is usually positive. Therefore, it

produces turbulence when ¥u}¥x is negative and dissipates turbulence when ¥u}¥x is
positive. Dissipation, associated with ε

xx
, is mainly negative near the wall, y+! 20. For

20! y+! 50, ε
xx

has both positive and negative peaks, but the positive ones are larger.
The integral ! ε

xx
dy+ over the whole field is positive, so that added stresses τ

xx
are, on

average, associated with the transfer of energy from the fluid to the bead–springs.
Added shear stress τ

xz
has both large positive and large negative values. It can be

associated with positive and negative ε
p

but, on average, is involved with a transfer of
energy from the fluid to the bead–springs. Added stress τ

xy
is mainly associated with

a transfer of energy to the bead–springs from the turbulence since ¥u}¥y and τ
xy

usually
have the same sign. The average value of ! ε

p
dy+ for all stress components is positive

so there is an additional net dissipation of turbulent energy due to the presence of the
bead–springs for the flow field that has been examined.
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The observation that ε
xx

for y+! 20 is, on average, negative indicates that polymer
stresses are producing turbulence in this region. This could account, in part, for the
large streamwise velocity fluctuations that are measured close to the wall. For another
random field such as might exist for turbulent flows with a large amount of drag
reduction, the possibility exists that the average ε

p
is mostly negative so that polymer

stresses could play a more important role than Reynolds stresses in producing
turbulence.

5.2. Rele�ance to polymer drag reduction

The rheological results in this paper have a number of implications for theoretical work
on drag reduction, if a FENE-P bead–spring chain is a good representation of a
polymer molecule.
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As pointed out in the preceding section, the added stresses that appear because of
the presence of polymer molecules cannot be described by simply increasing the
viscosity in the buffer region because these stresses are not directly related to the rate
of strain in the same manner as for a Newtonian fluid. Furthermore, it is not evident
to the authors that the observed relation between the added stresses and the velocity
gradients can be explained by any simple constitutive equation.

There is some consistency of the results with theories that use the notion of an
anisotropic viscosity, in that the added stresses are related to the orientation of
extended polymer molecules. However, there are enough differences to have concerns
about this approach. The assumption that stresses are related to velocity gradients in
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the same way as for a Newtonian fluid seems to be inconsistent with the observation
that peaks in ε

p
and εν are not coincident. The only place in the field where there is a

persistent orientation of polymer molecules is in the viscous sublayer. However, this
configuration does not greatly enhance the stresses associated with either ¥u}¥y or
¥w}¥y. The large values of τ

xx
that exist in the viscous sublayer cannot be explained by

an elongational viscosity since they are not associated with velocity gradient component
¥u}¥x.

The observation of large viscosities in pure elongational flows of solutions of drag-
reducing polymers has presented the interesting prospect that similar effects will be
observed in turbulence. No direct evidence for this type of behaviour has been
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obtained in this study. Elongational strains are always observed in conjunction with
other components of the rate of strain tensor. The important effects of positive ¥�}¥y
and positive ¥w}¥z come about because they rotate an extended chain away from the
x-axis or out of the (x, y)-plane. The most important added normal stress, τ

xx
, is mainly

associated with large positive values of ¥u}¥y or a combination of ¥u}¥y and ¥�}¥x.
The rheological study described in this paper agrees with the observation of a stress

deficiency whereby the sum of the Reynolds shear stress and the time-averaged solvent
stress is not equal to the total stress. Large intermittent values of τ

xy
are observed in

the buffer region when a certain combination of velocity gradient, components of
roughly equal magnitude (such as ¥�}¥y and positive ¥�}¥x and ¥u}¥y) extend the
polymer chain and rotate it away from the x-axis.

The results appear to be most consistent with the argument (Seyer & Metzner 1969;
Patterson & Abernathy 1970; Hanratty, Lyons & McLaughlin 1989) that polymers
affect the development of flow-oriented vortices in the viscous wall layer. These vortices
have an average spanwise dimension of 50 wall units (λ+¯ 100), and control the
production of turbulence and the thickness of the viscous wall region. One of the
striking laboratory findings about the effect of polymers on turbulence is an increase
of λ+. The dimensionless streamwise velocity at the outer edge of the buffer layer, ua +

!
,

increases if λ+ increases. Therefore, one approach to developing a theory of drag
reduction is to understand why λ+ increases. A possible explanation suggested by this
study is that the increased dissipation (over that expected from viscous effects),
associated with added stresses, could cause certain types of flow events to be
dampened. Because of this, flow-oriented eddies in the viscous wall region with given
length and time scales would have to increase in size (Hanratty et al. 1989) or become
less prevalent.

Finally, it should be mentioned that the results of this study do not address a
mechanism, discussed by de Gennes, that the energy cascade is affected because of the
damping of high-frequency velocity oscillations. It is quite likely that such a
phenomenon is operative. However, it is very difficult to connect this theory directly
with drag reduction.

6. Conclusions

A study of the behaviour of FENE-P chains in a random flow reveals large
intermittent stresses due to the presence of the chains and large intermittent exchanges
of energy between the fluid and the chains, ε

p
, which have been called ‘added

dissipation’.
If a FENE-P chain is representative of a polymer molecule, these results suggest the

following explanation for polymer drag reduction. When the ratio of the time constant
of the polymer to the reciprocal of the rate of shear at the wall is large enough the
polymers will unravel and introduce added stresses. These stresses can be associated
with added dissipations, which can be positive or negative. Positive values of ε

p
are

found to be associated with the flow-oriented vortices in the viscous wall region that
are large producers of Reynolds stress. Both scaling arguments and a calculation based
on a two-and-a-half-dimensional model for the viscous wall region (Hanratty et al.
1989) suggest that an intermittent large added dissipation will result in an increase in
the size of the wall vortices or a decrease in the fraction of the time that these vortices
are present.

The presence of unravelled polymer molecules, therefore, causes an increase in the
size (or a decrease in the importance) of the wall vortices in producing Reynolds
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stresses and a possible contribution of an added time-averaged shear stress. A
discussion of these results is facilitated by using simple eddy viscosity concepts
(Mizushina & Usui 1977). If the change of stress in the viscous wall region can be
ignored one can write

τ
w

¯ τp­τt­τs, (6)

where τp is a time-averaged added shear stress due to the presence of polymers, τt is
the turbulent Reynolds stress

τt¯ ν
T

dua
dy

, (7)

and τs is the viscous stress due to the solvent

τs¯ ν
dua
dy

. (8)

If terms are made dimensionless with the solvent kinematic viscosity and the friction
velocity u*¯ (τ

w
}ρ)"/#, one obtains

1®
τ
p

τ
w

¯ 01­
ν
T

ν 1
dua +
dy+

. (9)

If this is integrated out to the edge of the viscous wall region the velocity at y
!

is
obtained as

ua +
!
¯&y

+
!

!

(1®τ
p
}τ

w
) (1­ν+

T
) dy+. (10)

If τ
p
}τ

w
were zero, an increase ua +

!
(drag reduction) can be explained by a decrease

of ν+
T
(y+)¯ ν

T
}ν caused by changes in the velocity field that result from an increase in

λ+. However, if ν+
T
(y+) is the same as for a Newtonian fluid finite values of τ

p
}τ

w
would

give rise to a decrease in ua +
!
, or a drag increase. Consequently, within this framework,

the effect of a decrease in ν+
T

needs to be larger than the effect of a drag defect
(1®τ

p
}τ

w
).

A surprising aspect of laboratory measurements is that at large enough
concentrations of polymers, the Reynolds stresses, τt, are too small to explain the level
of turbulence by the mechanism observed in solvent flow, ®τ

t
dua }dy. The calculations

presented in this paper suggest that, under these circumstances, the fluctuating polymer
stresses could produce turbulence because of the existence of a net negative value of
ε
p
. This presents an interesting physical picture of a production mechanism whereby

the mean flow transfers energy to polymers. Part of this energy will be directly
transferred into heat through τ

p
. However, another part, associated with fluctuations

in the polymer stresses, is transferred to turbulent velocity fluctuations which, in turn,
dissipate into heat.
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